2021 AMC 10A Fall \#16

bkf2020
Updated on November 13, 2021

LICENSE

Under CC0

Commentary

Originally, I got C as the answer. This was because I thought $f(x)=f(-x)$ since I incorrectly assumed $\lfloor-x\rfloor=-\lfloor x\rfloor-1$ for $x \geq 0$. This is false for integers.

The correct solution:
First, assume $x>0$ and x is not an integer:

$$
\begin{aligned}
f(x) & =|\lfloor x\rfloor|-|\lfloor 1-x\rfloor| \\
& =|\lfloor x\rfloor|-|1+\lfloor-x\rfloor| \\
& =|\lfloor x\rfloor|-|1-\lfloor x\rfloor-1| \\
& =|\lfloor x\rfloor|-|-\lfloor x\rfloor| \\
& =0 .
\end{aligned}
$$

Then, assume $x<0$ and x is not an integer. To deal with this, we set $y=-x$ and we find $f(-y)$, where $y>0$ and y is not an integer

$$
\begin{aligned}
f(-y) & =|\lfloor-y\rfloor|-|\lfloor 1+y\rfloor| \\
& =|-\lfloor y\rfloor-1|-|\lfloor y\rfloor+1| \\
& =0
\end{aligned}
$$

So when x is not an integer $f(x)=0$.
Now, when x is an integer, we have

$$
f(x)=|\lfloor x\rfloor|-|1+\lfloor-x\rfloor|=|x|-|1-x|=|x|-|x-1| .
$$

If $x>0 \Longrightarrow x \geq 1, f(x)=1$ and if $x \leq 0, f(x)=-1$.

So finally, we find that at $(1 / 2,0), f(x)$ has symmetry because $f(1 / 2+a)+f(1 / 2-a)=0$ where $1 / 2+a$ and $1 / 2-a$ are integers.
Examples: $a=1 / 2 \Longrightarrow f(1)+f(0)=0, a=3 / 2 \Longrightarrow f(2)+f(-1)=0$.

